ANOVA de medidas repetidas con SPSS
En el Anova de medidas repetidas se analizan los resultados obtenidos en un diseño experimental en donde se ha manipulado una única variable independiente (un único factor) con 2 o más niveles pero de forma intra-sujeto. Esto viene a significar, que todos los individuos (o unidades de observación), han pasado por todos los niveles del factor. A este tipo de diseños también se les conoce como diseños de medidas repetidas en el sentido de que a cada sujeto se le repite la medición de la variable dependiente de respuesta en diversas condiciones, tantas como niveles tenga el factor manipulado. También se les conoce como diseños de medidas dependientes debido a que las puntuaciones de un mismo sujeto muestran dependencia estadística entre ellas, están relacionadas.
Se trata de comprobar, por ejemplo, desde un punto de vista de contrastes paramétricos, si las medias de una medición de una variable dependiente continua, son las mismas en distintos momentos del tiempo (3 o más), por ejemplo si un tratamiento de combinación de dieta y ejercicio (las 2 cosas como un todo) tiene la correspondiente contraprestación en pérdida de peso en 4 instantes del tiempo, esto es, se trata de 4 muestras relacionadas, dependientes o pareadas, tomadas sobre los mismos 10 individuos. Es algo parecido a la prueba de la T de Student para muestras relacionadas en un antes y un después, pero esta vez con 3 o más instantes de tiempo, en lugar de 2.
Si el tamaño muestral es lo suficientemente grande (n>30), se puede asumir normalidad, independientemente de cómo se comporten las variables en la población, pudiendo proceder de un modo paramétrico con el Test ANOVA de medidas repetidas con SPSS. En igualdad de condiciones, un test paramétrico (ANOVA) siempre va a ser mucho más potente que un test no paramétrico (FRIEDMAN), es decir, vamos a tener mayor probabilidad de encontrar diferencias estadísticamente significativas, que es lo que se trata, disminuyendo además la probabilidad de que esas diferencias encontradas, sean debidas al azar.
Índice del Artículo
Test de Normalidad
Se comprueba la hipótesis nula de Normalidad en la variable dependiente, y en el caso de no rechazo (probabilidad asociada mayor de 0,05),o tamaño muestral mayor de 50, se puede proceder desde un punto de vista paramétrico con la prueba ANOVA de medidas repetidas:
GLM de muestras dependientes o relacionadas
H0: µinstante1 = µinstante2 = µinstante3 = µinstante4
H1 : algún par de medias son diferentes
Contrastes multivariados
Hay diferencias estadísticamente significativas (p-valor <0,05), entre 4 los instantes de medición del peso en Kgs de manera global (p-valores de Prueba Multivariante), como se pretendía demostrar en la investigación de eficacia de los tratamientos de pérdida de peso. La Hipótesis nula de Mauchly es de homogeneidad de varianzas de las diferencias medias, al resultar esta prueba significativa, se tiene que tener en cuenta las pruebas de efectos intrasujetos, excluyendo la primera de las 4, pues parte de la asunción de esfericidad que acabamos de rechazar:
Y con estas pruebas, una vez se ha rechazado la homocedasticidad, se comprueba que efectivamente hay diferencias estadísticamente significativas entre los instantes de las mediciones de los pesos, pues el valor de probabilidad tanto de Greenhouse-Geisser, como de las otras 2 medidas, es sensiblemente menor que 0,05, como queríamos corroborar con esta investigación. Además, con el Eta parcial al cuadrado se obtiene que el modelo explica el 82,2% del comportamiento de la variable dependiente, o lo que es lo mismo, el 82% de la pérdida de peso es debida a los tratamientos. La fiabilidad de nuestra prueba es máxima a partir de los valores de la potencia observada de la última columna de la tabla.
Comparaciones múltiples
DMS
El test de comparaciones múltiples por parejas de la diferencia menos significativa (LSD) es el equivalente a pruebas t de entre todos los pares de grupos. La desventaja de esta prueba es que no se realiza ningún intento de corregir el nivel de significación observado para realizar las comparaciones múltiples.
Bonferroni
Una prueba de comparación múltiple, utilizada con frecuencia, ajusta el nivel de significación observado a que se realicen varias comparaciones. Es el test más conservador.
Sidak
Además de ajustar el nivel de significación, proporciona un límite inferior y un límite superior más estrechos que la prueba de Bonferroni.
Todos aquellos tratamientos en los que en la comparativa 2 a 2 presentan un p-valor (Sig,) menor que 0.05, muestran diferencias estadísticamente significativas en media en el cruce de los 2 instantes de tiempo (o 2 condiciones a las que son sometidos los casos/individuos), esto es, respecto a la pérdida de peso, objeto de la investigación. La prueba Post Hoc de Bonferroni es más conservadora, pero quizá Sidak sea la más utilizada en este tipo de ANOVA.
Friedman: Equivalente no paramétrico
En el caso de no cumplirse el supuesto de Normalidad en los datos, o de tamaños muestrales menores de 30, se procede desde un punto de vista no paramétrico con el Test de Friedman, el más conveniente para muestras relacionadas/dependientes, donde se viola este supuesto de partida:
Como la probabilidad asociada al estadístico de Friedman resulta estadísticamente significativa (valor p menor de 0,05), se rechaza el que el comportamiento en Mediana sea el mismo para los 4 grupos, por lo habría que testear donde se muestran tales diferencias con el Test de Wilcoxon en comparativas 2 a 2, equivalente no paramétrico a la prueba T de Student de muestras pareadas/dependientes (un antes y un después), o con la correspondiente prueba de comparaciones múltiples no paramétrica.
Pruebas Post-Hoc de comparaciones múltiples No paramétricas
Doble clic en vista de resultados en tabla ‘Resumen de prueba de hipótesis’, clic en la pestaña de ‘Ver’ + ‘Comparaciones entre parejas’:
Los cruces de los pesos con los valores de significancia ajustada en naranja se muestran como estadísticamente significativos, es decir, su valor de probabilidad asociada es menor de 0,05.
Test de Friedman con pruebas de comparaciones múltiples Post-Hoc en SPSS 29
Gráfico de significatividad post-hoc:
Caso práctico
Se conserva el outlier del instante de tiempo final porque al hacerlo, se está más cercano a la significatividad estadística en el Test de Friedman (no paramétrico) de comparativa de medianas de los 3 instantes de tiempo, que si no lo tengo en cuenta, en cuyo caso (en el de conservar el outlier), sí se aprecia normalidad en cada grupo, pero no se muestran diferencias significativas en ninguna de las 3 pruebas Post Hoc del Anova de medidas repetidas que se lleva a cabo, al no tener en cuenta dicho valor atípico en el gráfico de Box-Plot, comparativa de medias (paramétrico) de la medición de la variable de respuesta en los 3 momentos del tiempo.